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Abstract 

 

Traffic control and vehicle owner identification has become major problem in every 

country. Sometimes it becomes difficult to identify vehicle owner who violates traffic 

rules and drives too fast. Therefore, it is not possible to catch and punish those kinds of 

people because the traffic personal might not be able to retrieve vehicle number from the 

moving vehicle because of the speed of the vehicle. Therefore, there is a need to develop 

Automatic Number Plate Recognition (ANPR) system as a one of the solutions to this 

problem. There are numerous ANPR systems available today. These systems are based 

on different methodologies but still it is really challenging task as some of the factors like 

high speed of vehicle, non-uniform vehicle number plate, language of vehicle number and 

different lighting conditions can affect a lot in the overall recognition rate. Most of the 

systems work under these limitations. 
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Chapter 1 

1. Introduction 

 

Deep learning has been a huge topic in machine learning research 

closer to Artificial Intelligence. A few decades ago, computer 

scientists developed a number of algorithms that trained computers to 

distinguish multiple instances of the same object. 

  

With the growing number of drivers, and an increase of vehicles on 

the road come problems associated with traffic. Some of these 

problems, such as accurate bridge and highway tolling, parking lot 

management, and speed prevention, can now be solved using machine 

learning. This project will explore the use of deep learning for the 

purpose of vehicle tracking and license plate recognition.  

 

This project gave us the basic understanding of the modern neural 

network and how it works with applications in computer vision. By 

using the building blocks of neural networks, we were able to 

improve the accuracy of a model with its pre-trained model. We used 

our understanding of the pre-defined building model of the neutral 

network to compare the model accuracy using TensorFlow and Keras 

framework.  

 

 

 

 

2. Literature Review 
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There are many published papers that discuss topics about vehicle detection. We will 

focus on one article named ‘Image-based vehicle analysis using deep neural network: 

a systematic study’ . In this article, they use a DNN (YOLO) model to achieve vehicle 

detection. The article also covers training for vehicle classification on normal images 

and dark images. We are able to infer the success of our chosen project through the 

study of this article.  

 

3.Proposed System 

Our project is divided into two major components: vehicle detection and license plate 

character recognition.  

Phase I is detecting whether an input contains vehicles or not. If the algorithm predicts that 

the input contains vehicles, then we need to define a method which will precisely locate and 

crop the vehicle from the original data. Starting with the output from Phase I as the input, 

Phase II should search for the vehicle’s license plate and have the ability to recognize the 

number on the car plate.  

Through investigating, we found that vehicle detection is already quite developed and there 

are numerous existing methods online;; however, we still decided to explore deep learning 

through this project. We attempt to improve the accuracy with some pre-trained models.  

What’s more, in consideration of time and resource limitation, (we neither have enough time 

nor access to any GPU machine), we decide to challenge image based detection rather than 

video based.  

3.1 Vehicle Detection  

3.1.1 Initial Plan  

We first decided to build our own CNN model while using ImageNet as our starting point. 

We also considered applying some data augmentation on our dataset as a feasible method to 

improve prediction accuracy. Based on this idea, we did some research on currently popular 

solutions for vehicle detection.  

 

 

 

3.1.2 YOLO Model  
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YOLO caught our attention during our online investigation, as it was the most popular 

method of real-time object detection. Unlike prior detection systems, which apply the 

model to a target at multiple locations with different scales, YOLO only applies a 

single neural network to the whole target image. According to the YOLO official 

website, the image is divided into regions with different weighted predicts bounding 

boxes. Each region has its own probability. Compared to previous work for object 

detection like R-CNN, which requires recursion and needs a lot of time and memory, 

YOLO only looks once at the whole image. Therefore, it is able to digest more global 

context in the image which makes it work extremely fast.  

 

Since ‘car’ is a known class for YOLO, we decided to use this method. We found 

some valuable code from GitHub, which gave us insight into the use of YOLO 

weights to detect objects and how to implement visualization of the detected results. 

The available code uses TensorFlow implementation with pretrained YOLO small 

weight. 

 

 

Based on the code we found, we first made a single non-greyscale image as input data, 

and tried to test whether the code performed detection well or not. Every image that 

passes into the program is resized to 448x448, in order to match the model. In the 

meanwhile, we found that OpenCV gives wrong colour to coloured images when 

loading. This is because OpenCV uses BGR as its default colour order for images 

while matplotlib uses RGB. When displaying an image loaded by OpenCV in 

matplotlib, the colours will be incorrect. This problem requires the use of OpenCV to 

explicitly convert data back to RGB:  

RGB_img=cv2.cvtColor(BGR_img,cv2.COLOR_BGR2RGB)  

 

 

We also implemented the visualization part to mark the detected vehicle on the input 

image and cropped it for future use. Our implementation is able to crop multiple 

detected cars as well (see Figure 1).  

 

 

According to the source code, the author defines his own layers rather than using 

Keras layers and sets up a convolutional neural network model. We wanted to apply 

YOLO tiny weight from the YOLO official website to the model schema in Figure 2 

by using a similar method, but the result was unsuccessful. The reason for this failure 

is that the weight from YOLO website is designed for a specific model which is built 

in a .cfg file. In the .cfg file, the model is not sequential. After some investigation, we 

cannot find any Keras parallel model. For the purpose of using pre-trained weight, we 

needed to convert the .cfg format model into the model suitable for Keras through 

darkflow. This sample code helped us to do this job. Due to the time limitation of our 

project, we determined not to use this method.  
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Figure 1. Tiny YOLO model [2]  

 

Instead, we passed in 8000 test images through a loop. The images were all from a 

‘cars dataset’ published by Stanford University [4]. This is a large-scale, fine-grained 

dataset of cars. The average image size of this dataset is 980 x 728, and the largest 

image resolution is 3280 x 2240. The reason for choosing this dataset over some other 

small dataset is that we needed to crop the detected vehicle and pass the output to 

process the license plate for character recognition. If the resolution of initial input is 

too low, the whole program will lose accuracy. 

 

 So, there is a trade-off between speed and performance. Large images required more 

training/testing time and a more powerful device, but it gave a higher chance for us to 

detect a car and the car plate. But a problem arose while using the high-resolution 

images as a test set;; the memory was not large enough to accommodate them. So, 

after looping the whole program 32 times (in order to process 32 images), the system 

crashed and read the 33rd image as a grayscale image.  
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3.1.3 YOLO Custom Dataset  

Since the modification of neural network structure is limited by time and knowledge, 

we decided to adopt the common YOLO network structure, but we trained it from 

scratch with our custom dataset. We were interested in the extent of improvements via 

training with the relatively small number of data.  

Some specifications need to be clarified before proceeding into this project. First, 

YOLO program is implemented on the Linux platform, which means that 

modifications and debugging will be easier in Linux instead of Windows. Second, 

several applications are required to execute the files, including Python 2.7, OpenCV 

and the Darknet Toolkit. Notice that neither a virtual environment nor a specific 

backend is required since the YOLO configuration file is already implemented. Third, 

due to conflicts of the Nvidia graphic driver on a dual booting system, the CUDA 

toolkit cannot be utilized here, which in other words, means we cannot use a GPU to 

perform training. Lastly, in order to save time on data processing, we will focus on 

image dataset rather than real-time detection.  

3.1.4 Data Pre-processing  

The first challenge of the project was pre-processing our custom datasets. The dataset 

was obtained from the Stanford website .This dataset contained both a training set and 

a validation set, and each set contained more than 8000 car images. YOLO detection 

features the way of bounding boxes as shown in Figure 1. So, for car detection, we 

needed to manipulate our training sets and generate the information of each bounding 

boxes.  

We used the BBox-labeling tool to manually draw the bounding box. This tool was 

able to record the appearances of cars in each image, and the absolute coordinates of 

the bounding boxes. Unavoidably, the accuracy of training depended on our drawing 
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in this case. In addition, as mentioned in its documentation, this tool only recognized 

images with the suffix of “.JPEG”. Therefore, non-JPG type files needed to be 

converted first, and file names were required to be reorganized by some naming 

software like Bulk Rename in Ubuntu.  

However, YOLO program recognized the coordinates in a different way from the 

labelling tool. YOLO expected XY coordinates of both the object centre and width, 

while the labelling tool generated XY coordinates of four vertices . We then used the 

script called “convert.py” from Darknet to complete this conversion .  

3.1.5 YOLO Configuration  

Next, we needed to implement a custom YOLO configuration file in order to train our 

dataset efficiently. In the Darknet program, several configuration files were already 

given, including the whole neural network structure setup as shown in Figure 2. 

Therefore, there were only a few items to be modified. In the car detection phase, 

there was only one class which is car itself. The object data was referred to by the 

directories of all training images and validation images. The batch number indicated 

the number of images processed at each training step, which was further rectified by 

subdivisions according to the computer performance. The number of filters was 

determined by the following formula:  

Filters= (Class+5)×5 

Which in our case, was equal to 30 . Furthermore, we will take a pre-trained weight as 

a  

starting point. But from the testing results later on, we find this weight is basically of 

scratch.  

3.2 License Plate Detection and Character Recognition  

3.2.1 Components  

In order to create an effective license plate reading program, we needed to divide the 

process into separate components. First, the license plate had to be located within an 

image of a car. Next, the individual letters and numbers contained within the plate 

needed to be identified and cropped. Finally, the value of the cropped images of the 

individual characters had to be predicted.  

3.2.2 License Plate Detection  

The initial design of the license plate detection component was based on the 

assumptions that the input image would be a close-up picture of a vehicle with a North 

American style license plate. This component was developed using the Scikit-Image 

library, in addition to open source code by Femi Oladeji .  
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The input image was first converted to a binary image using Otsu’s method by 

creating a threshold. The connected components in the binary image are then located 

and labelled. These labelled regions have properties which can be iterated through. 

Using the regionprops() function of the Skimage library, the labelled regions were 

compared with certain criteria to see if they could be a license plate.  

We tried many different combinations of criteria to determine if a region was a license 

plate, such as the region’s size relative to image size, and the height to width ratio. 

Unfortunately, it was difficult to develop a reliable set of criteria since there were 

many possible variances in the input images. If successful, this step yielded a region 

that contained the black and white license plate.  

3.2.3 Segmentation  

Locating the characters within the license plate was done in a similar fashion as the 

previous step. First, the region containing the plate was labelled. Then, the regions 

within the plate were tested against some criteria. In order to find the license plate 

characters, the criteria we used were minimum and maximum dimensions based on 

the plate size. Once located, the characters were resized to 32x32, and appended to a 

list to be used in the next step.  

3.2.4 Prediction  

Character recognition was achieved using deep learning. Specifically, we created a 

convolutional neural network using Keras and TensorFlow. Our first model, based on 

The Semicolon’s code only gave us 71% accuracy . We subsequently changed to a 

model by Anuj Shah , which gave us much better results. The CNN model consisted 

of three two- dimensional convolution layers, and multiple drop out and max-pooling 

layers. The model is summarized in figure 7. We chose to use the adam optimizer as 

our update procedure. In order to train the network, we used a data set called 

Chars74k, which contained thousands of images consisting of letters and numbers . 

We narrowed down the dataset to only black and white computer fonts of capital 

letters and numbers from 0 to 9. At this point we ran into an issue regarding the 

competency of our hardware. Since we did not have access to a high-performance 

GPU, we had to train on a laptop CPU. During training, the sensors were reporting 

very high CPU temperatures. Due to the risk of overheating the CPU, we decided to 

constrain our training in a few different ways. Primarily, we wanted to keep training 

time at a minimum. Therefore, we decided to cap the number of epochs at 10. Another 

way to reduce training time, as well as memory usage, was to reduce the size of the 

training images. We decided that 32x32 images would be good enough to achieve the 

result we were expecting.  

The newly trained model took about 2 minutes per epoch for a total of about 20 

minutes. The reported accuracy was ~94% and a test loss was ~0.225. This model was 

saved into a .h5 file to be used in the prediction program.  



xvi 

 

The prediction program was initially designed to read the segmented letters from the 

previous segmentation step. This required saving images to numpy arrays, and 

expanding the array dimensions to satisfy Keras’ input requirements. For TensorFlow, 

the input had to be the following:  

 

 

3.2.5 implementation  

After training the “characters & numbers” and segmenting a license plate, figure 9 

shows the connection between both tasks at the testing step.  

 

 

 

Figure 9 .Merge both character segmentation and detection algorithms 

 

Screenshots of ML .pynb file 
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4. Web Application Deployment 

The team has come to a conclusion that without a user friendly mobile or web 

application, the above ML model wouldn’t reach its full perks. Our Web Application 

which is going to implemented with Django using Python as the backend part with an 

inbuilt SQLite database and ReactJS for the frontend  is going to consider the 

following real-life scenarios  , 

Problem statements adhering to the project: 
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1. Imagine an accident taking place on the highway and the victim has to inform 

the police/hospital of his/her location and find the nearest police station/ 

hospital. Also, the victim’s family members should be informed of the same. 

In this scenario, we can uniquely identify each user by his or her car plate number, 

and extract their information and contacts of his family members if he wishes to 

register in our application. 

If the user is met in an accident, since he is a registered user, he can directly enter 

location of accident and get the full advantages of our application. 

If he is an unregistered user, he can still get features such as the nearest hospital and 

police stations and later register on our application after help is provided. 

If the victim is conscious, a passer by can avail the features directly through the 

HomePage and provide help to the victim 

We can also add an ML model API in which the user scans his/her wounds and gets 

immediate wound detection remedies while professional help arrives.   

We plan to use the following technologies: 

• Google Maps API for live tracker 

• Wound Detection Model API 

• Folium and Leaflet JS for rendering nearest hospitals and police stations  

 

5. Result  

Although integration of all the components was not realized, we were moderately successful 

with both our vehicle detection and character recognition. For vehicle detection, we were able 

to predict vehicle with up to 25% confidence, and our training showed a final loss of 0.287. 

For character recognition, our model had a final test loss of 0.225 and claimed an accuracy of 

93%. It worked well for most fonts that we tested, but it is apparent that further work is 

required to improve it.  

 

 

6. Conclusion and Summary  
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In summary, we were able to understand the architecture of the convolutional neural network 

(CNN) and its training procedure and understand the whole procedure of YOLO custom 

model. Furthermore, we were able increase the prediction precision by training a small 

dataset. The aspiration is detecting foreign license plates with the trained international 

dataset.  

 

In conclusion, there are multiples of applications in computer vision that deep learning could 

be used for such.  
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